Kirwan Memorial Lecture

Meroitic royal chronology: the conflict with Rome and its aftermath

*Janice W. Yellin*

Reports

Middle Stone Age and Early Holocene Archaeology in Central Sudan: The Wadi Muqadam Geoarchaeological Survey

*Rob Hosfield, Kevin White and Nick Drake*

Newly Discovered Middle Kingdom Forts in Lower Nuba

*James A. Harrell and Robert E. Mittelstaedt*

The Pharaonic town on Sai Island and its role in the urban landscape of New Kingdom Kush

*Julia Budka*

In a Royal Cemetery of Kush: Archaeological Investigations at El-Kurru, Northern Sudan, 2014-15

Introduction

*Geoff Emberling, Rachael J. Dann and Abbas Sidahmed Mohamed-Ali*

Cultural Heritage at El-Kurru

*Abbas Sidahmed Mohamed-Ali*

Documentation and Conservation of the Painted Tombs: Progress Report VII. and XRF Analysis of the Painted tombs

*Rikke Therkildsen*

Visualizing the Painted Tombs

*Sarah M. Duffy*

Excavation of Pyramid Ku. 1

*Geoff Emberling*

The Pyramid Chapel Decorations of Ku. 1

*Janice W. Yellin*

A Mortuary Temple at El-Kurru

*Geoff Emberling*

Meroitic Graffiti in the Mortuary Temple

*Sebastian Anstis*

Some Remarks on Stonemasons’ Marks in the Mortuary Temple

*Tim Karberg*

Conclusions and Prospects

*Geoff Emberling, Rachael J. Dann and Abbas Sidahmed Mohamed-Ali*

The Qatar-Sudan Archaeological Project – Excavations and other activities at Kawa in the 2014-15 season

*Derek A. Welsby*

The Meroitic Palace and Royal City

*Marc Maillot*

The Qatar-Sudan Archaeological Project at Dangeil

Satyrs, Rulers, Archers and Pyramids: A Miscellany from Dangeil 2014-15

*Julie R. Anderson, Mahmoud Suliman Bashir and Rihab Khidir El Rasheed*

Dangeil: Excavations on Kom K, 2014-15

*Sébastien Maillot*

The Meroitic Cemetery at Berber. Recent Fieldwork and Discussion on Internal Chronology

*Mahmoud Suliman Bashir and Romain David*

The Qatar-Sudan Archaeological Project – Archaeology and acoustics of rock gongs in the ASU BONE concession above the Fourth Nile Cataract, Sudan: a preliminary report

*Cornelia Kleinitz, Rupert Till and Brenda J. Baker*

The Qatar-Sudan Archaeological Project – The Meroitic Town of Hamadab and the Palaeo-Environment of the Meroe Region

*Paweł Wolf*

The 2015 Season of Excavations at Kurgus

*Andrew Ginn*

Plant Macro-remains Recovered from El-Hamra Christian Complex Excavation in El-Ga’ab Depression, Sudan

*Ikrum Madani, Yabia F. Tahib and Hamad M. Hamdeen*

QSAP Dam-Debbâ Archaeological Survey Project (DDASP). Preliminary Results of the second season

*Fawzi Hassan Bakhiet*

Archaeology at Selima Oasis, Northern Sudan – recent research

*Friederike Jesse, Coralie Gradel and Franck Derrien*

Results from the re-investigation of Henry Wellcome’s 1911-14 excavations at Jebel Moya

*Michael Brass*

Obituary

Denver Fred Wendorf, Jr. (1924-2015)

*Romnald Schild*

Front cover: QSAP Dam-Debbâ Archaeological Survey Project. Site DS7, Ganati: the re-erected columns in the church (photo: Fawzi Hassan Bakhiet).

*Sudan & Nubia* is a peer-reviewed journal.
Plant Macro-remains
Recovered from El-Hamra
Christian Complex Excavation
in El-Ga’ab Depression, Sudan

Ikram Madani, Yabia F. Tabir
and Hamad M. Hamdeen

Introduction
Archaeobotany is the study of plant remains from archaeological sites to better understand the environmental context of past societies and how the environment was exploited and modified (Hastorf 1999). Many archaeobotanical studies have been conducted in the north of Africa. Most of them were ecologically oriented focusing on environmental reconstruction and landuse and identification of the level of agricultural impact on the landscape (Watson 1989; Krzyżaniak 1991; Haaland 1992; Gremillion 1993; Jones 1994). In Sudan, the study of plant macro-remains in desert areas has improved our knowledge of past environments and economic plants, as well as processes involved in plant domestication.

Klichowska (1984, 221) studied the seed impressions of plants on potsherds at Kadero’s Neolithic settlement (north to Khartoum), a site dated to c. 5030-5280 BP (3080-3330 BC). He identified impressions belonging to grasses; the most frequent impressions were the cereals sorghum and millet. Martens (2011) studied 76 samples from the Neolithic settlement and graves at Kadero; these samples being dry-sieved through 1mm and 0.5mm sieves. The botanical assemblages contained mainly small pieces of charcoal; the only types of plant remains other than charcoal were fragments of fruit stones of Ziziphus and hackberry (Celtis).

Magid (1991) identified some plant remains recovered from a Neolithic cave (S1-A) at Shaqaud. The specimens included Pennisetum sp., Sorghum sp., Panicum turgidum, Grewia tenax, Zizyphus spinosa-christi, Solanum dubium, Sida alba, Crotalaria sp., Setaria sp., Cruciferae, Chenopodiaceae and Leguminosae.

Rowley-Conwy (1991) stated that evidence of domesticated sorghum, S. bicolor, occurs very late at Meroe dating to 1970 ± 127 BP. Exploitation of sorghum was practiced from the sixth millennium BP but domesticated sorghum in Khartoum area emerged only around 2000 BP (first half of the 1st century BC) (Haaland 1992, 43).

Beldados and Constantini (2011, 37) stated that archaeobotanical analysis of the ceramic data from Kassala (Mokram Group) showed that during the second millennium BC sorghum was widely cultivated in the eastern part of the Sudan. Fuller (2004) believed that the sorghum there is dated by ceramics and associated material to 1500-500 BC. This is an important point, as it suggests the cultivation of sorghum earlier than any of the finds in the Nile Valley, which are mainly Meriotic, with possibly earlier Napatan sorghum at Kawa.

The radiocarbon-dated phytoliths from the burial samples from R12 (Seleim-Dongola) and the cemetery of el-Ghāba (Shendi) (Madella et al. 2014, 2) show the presence of Near Eastern domesticated cereals in northern Sudan at least 7000 years ago. Phytoliths also indicate the exploitation of wild, savannah-adapted millets in central Sudan between 7500 and 6500 years ago. The calcilus samples contained starch grains from wheat/barley, pulses and millets, as well as panicoid phytoliths. This evidence shows that Near Eastern domestic cereals were consumed in northern Africa at least 500 years earlier than previously thought (Madella et al. 2014).

Magid (2003) presented the archaeobotanical data derived from impressions on prehistoric pottery recovered from the sites of Sheikh Mustafa and Sheikh el-Amin in the Blue Nile area. The procedure for identification was mainly based on comparisons of the external morphological features (i.e. shape, size and surface pattern) of the positive casts with reference to a collection of extant plants, and with results of experimental plots showing changes in dimensions of grain impressions as seen in their positive casts. The specimens include: Setaria sp., Wild sorghum sp., Cassia sp., Grewia sp., Celtis integri folia, Solanum dubium, Cucurbitaceae, (flattened) glume, Echinocloa sp., Carex sp. and Grewia tenax and Solanaceae.

Lopez Saez and Garcia (2003) studied some pollen samples collected from three prehistoric sites along the Blue Nile, el-Mahalab and Sheikh Mustafa dated to the early Holocene, and Sheikh el-Amin dated to the middle Holocene. The pollen types included Acacia sp., Gramineae, Cerealia type, Asteraceae, Cichorioidae, Cardueae, Boraginaceae, Capparaceae, Urticaceae, Cyperaceae, Balanites aegyptica, Filicales triletes, Chetomum sp., Sordariaceae, Gomus cf. fasciculatus and Pseudoschizaea cirula.

Cartwright (2001, 557-560) examined archaeobotanical remains from Kerma graves and from a building on the eastern bank of the Nile between Eimani and Mulwad (Dongola Reach). The species noted were Acacia spp., Phoenix dactylifera, Salvadora persica, Faustberbia albida, Balanites aegyptica, combertum sp., Tamarix nilotica, Caparris dinidea, Celtis integri folia, Cassia sp., Hyphaene thebata, Zizyphus spinosa-christi and Borassus aethiopum. Other grasses, cereals and weeds were Hordeum sp., Triticum sp., Portulaca oleracea, Cleome gynandra and Cyperus rotundus and Calotropis procera.

Badura (2012) presented preliminary results from carpological analysis of cultural layers in Napatan settlement HP736 in the Fourth cataract excavated by GAME in 2006. The archaeobotanical samples were obtained from five structures and included large amounts of mineralized seed and fruit remains as well as sheep/goat coprolites. The analysis of this material revealed the presence of both cultivated and wild plants including Triticum cf. dicoccum, Citrullus lanatus, Citrullus colocynthis, Panicum turgidum, Echinocloa type, Setaria sp., Arnebia cf. hispidissima, Solanum nigrum; Eleusine cf. indica, Zzya cf. decandra and Tribulus sp.

Shinnie found, during excavations of the Royal city at Meroe in Temple M 720, a dense layer of burnt domestic
material, including charcoal, grain, dom palm nuts, date stones, bone and carbonized fragments of basketry similar to the woven grass mats and baskets in use in the area today (Shinnie and Anderson 2004, 34). Triticum turgidum, Hordeum sp., Sorghum sp., Phoenix dactylifera were recovered from these excavations (Shinnie and Anderson 2004, 366).

Fuller and Edwards (2001) published preliminary results of a study of archaeobotanical evidence from medieval buildings at Nauri (Third Cataract Region). The samples were sieved to separate them into manageable sized fractions and then sorted under a binocular microscope and studied at magnifications between 6x and 40x in order to identify the taxa present. Identification focused on the economic plants, which dominated all the samples and included:

1) Cereals: Triticum sp. (wheat grain), Triticum sp. (glume), Triticum estivum (rachis), Hordeum vulgare (barley grain), H. vulgare (chaff), H. vulgare (sterile spikelet), H. vulgare rachis segment, Sorghum bicolor (sorghum grain), S. bicolor (spikelet base), S. bicolor (husk fragment), Pennisetum glaucum (Pearl millet involucres), P. glaucum (grain), Setaria italic 
(foxtail millet spikelet), S. italic 
( lemma/palea), S. italic 
( rachis segment w/bristles), Setaria cf., sphaeleata type (spikelets/chaff) and Culm node (grass/cereal).

2) Grain legumes: Vigna unguiculata (cowpea), Pisum sativum (pea) and Lens culinaris (lentil).

3) Other crops: Carthamus tinctorius (safflower), Ricinus communis (castor) and Gossypium sp. (cotton), Citrus lanatus (watermelon), Vitis vinfera (grape), Phoenix dactylifera (date, fruits / stones / parts) and Vitis cf. carica (fig seeds).

4) Wild seeds: Acacia sp. (type seed), small and medium sized seeds of wild legumes, Malvaceae, Malva cf. Neglecta seeds, Capparaceae cf. Cleome sp. seeds, Apiaceae type seeds, and wild grass spikelet.

Nussbaum and Darius (2012) published the first archaeobotanical results from Boni Island in the Fourth Cataract, their study based on material from a number of trenches and test pits dug down in three sites, S05/140 and S 05/142 with early Khartoum /Neolithic occupation, and site 05/141, a tumulus cemetery of the Kerma Classique, and at site 04/57, a late Christian site. The sediments, sieved through a 2mm sieve, included the following species: Acacia sp., Chenopodiaceae, Capparidaceae, Fruits (Phoenix dactylifera, Hyphaene thebaica, Ficus sp, Citrullus cf. lanatus, Citrullus cf. colocynthis, Vitis sp.m Cucumis cf. melo) and wild seeds (Acacia sp., and many other species).

Ryan et al. (2012) in the Amara West Egyptian settlement in Upper Nubia (Pharaonic occupation c. 1500-1070 BC) used different archaeobotanical techniques to elaborate plant species from the remains. The recovered plant species were:

Cereals – wheat (Triticum dicoccum), barley (Hordeum vulgare);

Other crops – domesticated lentils (Lens culinaris), flax (Linum usitatissimum), small legumes, cf. C. ficusindica (meduhabjaih);

Fruits – (Ficus sycomorus), dom palm (Hyphaene thebaica), Phoenix dactylifera, white cross berry (Grewia tenac), Christ's thorn (Z. spina-christi), Cucumis sp., colocynth (Citrullus colocynthis), watermelon (Citrullus lanatus), Sycomore, G. tenac berries; Seeds – sedges (Cyperaceae), (Fimbristylis sp.), (Cyperus sp.), rushes (Juncaceae), (members of the Amaranthaceae family), (Portulaca laraea); Seeds – (Acasia nilotica), (chloroid subfamily of the Poaceae) and desiccated wood and charcoal – (F. sycomorus), (Tamarix spp.).

Study Site

The study area is el-Ga‘ab (Figure 1) which is a great depression west of the Dongola Reach flooded during the early Holocene when a lake was formed. The lowest portion of Wadi el-Ga‘ab must be considerably lower than the level of the Nile (214m above sea level) so that the water table ranges from 1-2m below the surface in some areas while elsewhere there are springs, as at Gaab et-Thowani, where the water is of usable quality and quantity. Ga‘ab el-Mowlili is situated in the northern third of the depression south west of Ga‘ab el-Mangour, and the land is covered with sand dunes in most parts especially in el-Hamra area. More than 70 archaeological sites were registered in Ga‘ab el-Mowlili. In el-Hamra area there is a Christian complex formed of six visible buildings with possibly other buried ones. Site EH-4-008 is the ruins of a church (Plate 1). During the excavations some carbonized seeds were recovered.

Plate 1. El-Hamra, kitchen.
This study was conducted within the framework of the Archaeological, Ethnographical and Ecological Project of El-Ga’ab Depression in Western Dongola (Northern Sudan) which was launched by the Department of Archaeology, Faculty of Arts, University of Khartoum in 2007. It will be the first archaeobotanical investigation in the el-Ga’ab area. The aim of this study is to identify the plant macro-remains encountered during excavations at el-Hamra Christian complex (EH-4-008), an important source of information for the reconstruction of past environments and human activities including agriculture in the area.

Material and methods

Ten soil samples containing carbonized plant macro-remains were collected during excavations at el-Hamra Christian complex (EH-4-008) (January 2015). They were taken from three different squares (EH-4-008-C2, C3, B2). Samples were separated by flotation and sieved through 2mm and 0.5mm meshes. The collected carbonized plant macro-remains were then studied in the laboratory of the Botany Department, Faculty of Science, University of Khartoum. They were morphologically analyzed using a stereo microscope (Wild, M5A, HEERBRGG, 194683, Switzerland) and identified by consulting relevant plant morphology publications. A study collection of modern seeds and fruits was also used to confirm the identity of samples. Identified plant remains were photographed beside their corresponding modern counterparts for comparative purposes.

Results

Six plant species which were encountered as seeds or fruits were identified from their remains. Table 1 shows the Latin names, local names, common names and family names of the determined species. Plates 2-7 show the morphological details used as taxonomical characteristics for identification of each species.

<table>
<thead>
<tr>
<th>Family names</th>
<th>Latin names</th>
<th>Local names</th>
<th>Common names</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poaceae</td>
<td><em>Triticum aestivum</em> (L.)</td>
<td>Gamih</td>
<td>Wheat</td>
</tr>
<tr>
<td>Poaceae</td>
<td><em>Hordeum vulgare</em> (L.)</td>
<td>Shaeer</td>
<td>Barley</td>
</tr>
<tr>
<td>Leguminosae</td>
<td><em>Cicer arietinum</em> (L.)</td>
<td>Kabkabi</td>
<td>Chickpea</td>
</tr>
<tr>
<td>Leguminosae</td>
<td><em>Phaseolus vulgaris</em> (L.)</td>
<td>Phasolia</td>
<td>Common bean</td>
</tr>
<tr>
<td>Arecaceae</td>
<td><em>Phoenix dactylifera</em> (L.)</td>
<td>Balah</td>
<td>Date</td>
</tr>
<tr>
<td>Arecaceae</td>
<td><em>Hyphaene thebaica</em> (L.)</td>
<td>Dom</td>
<td>Dom palm</td>
</tr>
</tbody>
</table>

Discussion

The building excavated is formed of four rooms, one of which seems to have been for storage and preparation. It contained many pottery jars, one *gossi* (mud-built container) and grinding stones. In another room, abundant ash and charcoal were found so it may have been the kitchen. It is seems that this building was the catering site for the whole complex and seeds associated with the human diet were recovered.

Although the evidence is not entirely conclusive, it appears that abandoned *matara* (waterwheel well) are one of the archaeological features of el-Ga’ab Depression. Three *matara* were reported in el-Hamra region (sites E H-3-001, EH-4-008 and EH-4-0012). *Qadus* (sagia wheel pot) sherds.
are distributed in the vicinity of abandoned wells. Such sites may be greater in number than what has been discovered, as sand dunes hide many archaeological sites, among them perhaps *mataras*. The presence of three *saqias* in a small area is indicative of intensive agriculture practices in el-Hamra region. Another possibility for irrigation is the usage of *shadoof*. In light of this evidence for agricultural activity it is assumed that the seeds recovered are from local production.

The Chickpea (*Cicer arietinum*) and Common bean (*Phaseolus vulgaris*) legumes were recovered for the first time from Sudanese archaeological sites according to the literature reviewed. It is, therefore, pertinent in this article to enquire about the source of these two legumes and their introduction into the Nubian diet. The chickpea is the third most important pulse in the world. It is an ancient crop which is first recorded from the Middle East and subsequently spread to other countries with arid/semi-arid and subtropical environments. Use of the chickpea may date back to the early Neolithic period (7000-8000 BC) together with wheat, barley, pea and lentils. It is evidenced in the archaeological remains of domesticated chickpeas located at Çayönü in Turkey (van Zeist 1972) and Tell Abu Hureyra in Syria (Hillman 1975). The oldest large seeds of clearly domesticated chickpea plants have come
from Bronze Age sites in Israel and Jordan (Hopf 1978), Jericho (Hopf 1983) and Bab edh-Dhra (McCreery 1979). Archaeological evidence indicated the arrival of the chickpea in Greece at the earliest from 800 BC (Kroll 1981), in Southern France by about 1000 BC (Courtn and Erroux 1974), in India by AD 1700-2000 (Choudhury et al. 1977; Vishnu-Mittra 1974) and in Ethiopia via the Mediterranean by AD 1000 (Ramanjum 1976).

It is now agreed that cultivated species of Phaseolus originated in Latin America (Evans 1980). Archaeological evidence is available from South America (i.e. in Peru) to trace the period of domestication of *P. vulgaris* as far back as 6000-5000 BC (Evans 1976). Brazil and north Argentina are the areas of domestication of Phaseolus species (Berglund-Brucher and Brucher 1976). *P. vulgaris* and *P. lunatus* are likely to have travelled from America through the Philippines to Asia and from Brazil to Africa. During the 17th century they were widespread in Italy, Greece, Turkey and Iran (Evans 1980). There is no clear data to document the introduction of Phaseolus to Sudan but this study dates back its presence in Sudan to at least the Christian period. The spread of the two crops to Sudan has now become a matter of debate and the future research will hopefully provide more evidence on the issue. Most probably the crops were introduced from Egypt bearing in mind the strong relationship between the Nubian and Egyptian churches during the Christian period. Although, all archaeological evidence indicates that these plant remains belong to the Christian period, further confirmation from radiocarbon dating is strongly recommended in the near future. Most historians believe that American crops were introduced into Europe after contact with the Americas in the late 15th and early 16th centuries. American crops like maize, which was domesticated in Mexico, were carried to Europe and introduced to other countries. Miracle (1965) stated that maize was introduced to Africa from the north, across the Sahara, by Arab traders, as well as along the coasts by the Portuguese in the 1500s. In 1623 maize was reported in Ethiopia (McCann 2001).

The most common botanical elements recovered on this site are cereal grains of *Hordeum vulgare* and *Triticum aestivum*. These two cereal grains were also found by Fuller and Edwards (2001) at Nauri, a medieval-post-medieval site in the Third Cataract region.

*Hordeum vulgare* (barley) is grown as an animal food crop today. Record of this plant in this site indicates its importance as a food source for humans in the past. Barley possess a higher ecological adaptation to salinity and drier conditions than wheat and this may be the reason behind its consideration for human consumption during dry periods.

Dom and dates are local indigenous vegetation used as fruits and commonly are recovered from Sudanese archaeological sites especially post-prehistoric periods e.g Cartwright (2001, 557-560); Shinnie and Anderson (2004, 34) and Fuller and Edwards (2001).

Although the presence of sorghum is historically attested for Sudan and there is much evidence for its cultivation or domestication such as amongst the Mokram group (eastern Sudan), the record of spikelets during the Meroitic period and at Nauri in the medieval period, in the site under discussion here so far no sorghum remains have been recorded. This may be attributed to the fact that sampling was concentrated in the ‘storeroom’; possibly sorghum might be present in other contexts.

**Aknowledgement**

Our thanks to all el-Ga’ab mission members specially Dr Howida M. Adam and Ust. Ahmed Hamed Nasar.

**Bibliography**


The West Bank Survey from Faras to Gemai 1. Sites of Early Nubian, Middle Nubian and Pharaonic Age

by H.-Å. Nordström
London, 2014

xviii + 178 pages, 29 tables, 33 plates, 74 figures
ISBN 978 1 901169 195

This volume completes the three-volume series devoted to the results of the survey and excavations conducted by the Sudan Antiquities Service between 1960 and 1963 during the UNESCO-sponsored Campaign to Save the Monuments of Nubia. The author reports in detail on the Pharaonic and earlier sites, the excavation of many of which he personally directed. Also heavily involved in the publication of the Scandinavian Joint Expedition's work on the opposite bank, he is ideally placed to provide a synthesis of the evidence for human activity in this part of the Nile Valley, now largely inundated.

Retail price £35. Available to members at the discounted price of £30
(p&p UK £4.90, overseas, Europe £9, Worldwide £15)

Gabati

A Meroitic, Post-Meroitic and Medieval Cemetery in Central Sudan.
Vol. 2: The Physical Anthropology

by Margaret A. Judd,
with a contribution by David N. Edwards
London 2012

xii + 208 pages, 110 tables, 15 figures, 66 maps, 73 colour plates
ISBN 978 1 901169 197

The cemetery at Gabati, dating from the Meroitic, post-Meroitic and Christian periods was excavated in advance of road construction in 1994-5, the detailed report being published by SARS in 1998. This complementary volume provides an in-depth analysis of the human remains. A final chapter, a contribution from David Edwards, the field director of the project, in conjunction with Judd, assesses the archaeological results in light of continuing research in the region over the last decade and more.

Retail price £33. Available to members at the discount price of £29.
(p&p UK £4.90, overseas - Europe £9, rest of world £15)

Please order these books from the Honorary Secretary at the Society’s address
or via the website http://www.sudarchrs.org.uk/resources/publications/
The Debeira West excavation team 1964 with amongst others, Peter and Margaret Shinnie, John Alexander, John Anquandah and Tony Bonner (photo: SARS Alexander Archive, ALE P003.04).

The Debeira West excavation team 1964 with amongst others, Peter and Margaret Shinnie, John Alexander, John Anquandah and Tony Bonner (photo: SARS Alexander Archive, ALE P003.04).